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1D soft Bosons across the liquid/cluster-liquid transition:

the interplay between Luttinger and quantum Ising universality classes

Model: 1D system of Bosons interacting via a soft shoulder potential, typical of dressed
Rydberg gases. Previous investigations:

o ®
+ classical [Phys. Rev. E 92, 022138 (2015)] e
+ quantum lattice model [Phys. Rev. Lett. 111, 165302 (2013)]. * °
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A star marks the critical point between the Luttinger-Liquid (LL) and Cluster-Luttinger-Liquid (CLL) phases for
densities commensurate to 2-particle clusters. The dashed line corresponds to the softening of the roton in the LUTTINGER LIQUIDS N
Bogoliubov approximation of the LL phase. Inset (a) represents the delocalized orbital in the effective double- | TONKS GIRARDEAU HARD—ROD REGIME
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Luttinger Liquid (LL): Universality class of 1D systems, characterized by a gapless bosonic phonon mode v .o 1 s
at small momenta. The low-energy and momentum Physics is governed by the hydrodynamic Hamiltonian: —— # = z—sfdx {KL [VH(X)] + K—[W)(x)] }
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Alarge Luttinger parameter K, > 1 favors the fluctuation of the counting field ¢(x), i.e. liquid-like behavior, while

small values of K, induce crystal-like behavior, by disordering the phase field 6(x). K Eiyiennel B x) = o, + £ Vo(x) e

Methods: We employ quantum Monte Carlo (MC) simulations, < e LEN e i e LEN & 1/’>
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which allow for the exact calculation of imaginary-time correlations £ (r) = <p ()p (O)> _ =f dwes(q, )
f,(r), and a stochastic analytic continuation method [Phys. Rev. B 82, 9 9t T <¢ ‘1/,> ° N
Imaginary-time density-density correlation o| %o ynamic

174510 (2010)], to extract the dynamical structure factor S(q,w). structure
Note: extracting S(q,w) from MC calculation of f,(z) is an ill-posed inverse problem  factor
The Path Integral Ground State (PIGS) MC method [J. Chem. Phys. 113, (2000)] = regularization and statistical analysis needed!

is an “exact” projector technique that provides direct access to ground-state The Path Integral Ground State method uses a
expectation values of Bosonic systems, given the microscopic Hamiltonian H. Trotter's decomposition to manage the
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Spectra in the liquid phase at U = 1.09, close
to the TG regime (2) and at intermediate p (b)
(values beyond scale are plotted in white).

(c) Evolution of Feynman approximation for
the dominant mode, from the liquid regime to

Results: At low density, the system maps to the Lieb-Liniger (1D
contact interaction), Tonks-Giradeau (TG: 1D ideal Fermi gas), and 1D
Hard-rods (HR) models. In the weakly-interacting homogeneous
regime, a rotonic spectrum marks the tendency to clusterization. With
strong interactions, we indeed observe cluster liquid phases emerging, ) the large-p cluster phase, compared to
characterized by the spectrum of a composite harmonic chain. 2 04 05 06 10 12 1400 02 04 06 08 10 12 14 °° BOgoliubov approximation. )
Luttinger theory has to be adapted by changing the reference lattice aunisof2g) 9 (units of 2 (d) Bvolution of the pair distribution function.

density field. We find convincing evidence of a secondary mode, which Feynman s
becomes gapless only at the transition, and associate it to a transverse spgctrum: e (q) = ho_, = nq
Ising model [Science 327, 177 (2010)], related to the instability of the A 7 2ms(q)
reference lattice density field towards coalescence of sites. ,
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| (o) U =15 '5 @ fd (a) Pair distribution function at p=1.37 from
the LL to the CLL phases.

(b) Typical spectrum in the CLL phase.
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Spectra at p=1.37 along the
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