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LCP
1D soft Bosons across the liquid/cluster-liquid transition:


 the interplay between Luttinger and quantum Ising universality classes


Tentative phase diagram (log-log scale): 
A star marks the critical point between the Luttinger-Liquid (LL) and Cluster-Luttinger-Liquid (CLL) phases for 
densities commensurate to 2-particle clusters. The dashed line corresponds to the softening of the roton in the 
Bogoliubov approximation of the LL phase. Inset (a) represents the delocalized orbital in the effective double-
well potential experienced in the homogeneous phase. Inset (b) represents the localized left and right orbitals. 

Spectra in the liquid phase at U = 1.09, close 
to the TG regime (a) and at intermediate 𝜌 (b) 
(values beyond scale are plotted in white).  
(c) Evolution of Feynman approximation for 
the dominant mode, from the liquid regime to 
the large-𝜌 cluster phase, compared to 
Bogoliubov approximation. 
(d) Evolution of the pair distribution function. 

Spectra at 𝜌=1.37 along the 
transition for different values of 
U, compared to the Feynman’s 
approximation, the Bogoliubov 
spectrum.  
At q≃kF=qC the secondary 
mode is fitted with an Ising-like 
spectrum. 

(a) Pair distribution function at 𝜌=1.37 from 
the LL to the CLL phases. 
(b) Typical spectrum in the CLL phase. 

Model: 1D system of Bosons interacting via a soft shoulder potential, typical of dressed 
Rydberg gases. Previous investigations: 
•  classical [Phys. Rev. E 92, 022138 (2015)] 
•  quantum lattice model [Phys. Rev. Lett. 111, 165302 (2013)].  
 

Methods: We employ quantum Monte Carlo (MC) simulations, 
which allow for the exact calculation of imaginary-time correlations 
fq(𝜏), and a stochastic analytic continuation method [Phys. Rev. B 82, 
174510 (2010)], to extract the dynamical structure factor S(q,𝜔).  
 

Results: At low density, the system maps to the Lieb-Liniger (1D 
contact interaction), Tonks-Giradeau (TG: 1D ideal Fermi gas), and 1D 
Hard-rods (HR) models. In the weakly-interacting homogeneous 
regime, a rotonic spectrum marks the tendency to clusterization. With 
strong interactions, we indeed observe cluster liquid phases emerging, 
characterized by the spectrum of a composite harmonic chain. 
Luttinger theory has to be adapted by changing the reference lattice 
density field. We find convincing evidence of a secondary mode, which 
becomes gapless only at the transition, and associate it to a transverse 
Ising model [Science 327, 177 (2010)], related to the instability of the 
reference lattice density field towards coalescence of sites. 
 

The Path Integral Ground State (PIGS) MC method [J. Chem. Phys. 113, (2000)] 
is an “exact” projector technique that provides direct access to ground-state 
expectation values of Bosonic systems, given the microscopic Hamiltonian Ĥ. 
Observables are calculated as: 
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Ĥ = T̂ + V̂ =
p̂ i
2

2mi=1
N

∑ +
V0

x̂ i − x̂ j

6
+ RC

6i<j=1
N

∑

Rydberg state: highly excited electronic state 
→ RC Rydberg blockade radius 
Resonant light-atom coupling:  

full blockade→ hard-core effective particles 

RC

RC

Dressed Rydberg state:  
Off-resonant light-atom coupling: 

quantum superposition  
of ground-state and Rydberg state 
→ soft-core effective particles 

Purely repulsive potential 

Repulsive	  surrounding	  clusters	  

Effective attractive interaction 

Nega3ve	  minimum	  in	  	  
1D	  Fourier	  transform	  of	  V:	  

Clustering	  effects	  

!V (k)

kC =
2π
bC

≅
4.3
RC

Natural units: 
•  Lenght: RC 

•  Energy: EC=ħ2/mRC
2 

⇒ U = V0 / EC 

⇒ 𝜌 = N RC / L 

Luttinger Liquid (LL): Universality class of 1D systems, characterized by a gapless bosonic phonon mode 
at small momenta. The low-energy and momentum Physics is governed by the hydrodynamic Hamiltonian: 
 

A large Luttinger parameter KL > 1 favors the fluctuation of the counting field 𝜙(x), i.e. liquid-like behavior, while 
small values of KL induce crystal-like behavior, by disordering the phase field 𝜃(x). vS = sound velocity 
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Note: extracting S(q,𝜔) from MC calculation of fq(𝜏) is an ill-posed inverse problem 
 ⇒ regularization and statistical analysis needed! 

The Path Integral Ground State method uses a 
Trotter’s decomposition to manage the 
imaginary time evolution via path integration: e −τ Ĥ = e − τ
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⇒ quantum-classical mapping:  
the quantum system is mapped onto a classical 
system of special interacting linear polymers 
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