

UNIVERSITÀ DEGLI STUDI DI MILANO

Recent developments and perspectives in NUCLEAR STRUCTURE by gamma and particle spectroscopy

Silvia Leoni

UNIMI/INFN: A. Bracco, F. Camera, F.C.L. Crespi, S. Bottoni, S. Leoni, A. Mentana, A. Pullia, S. Capra, S. Riboldi, P.F. Bortignon, G. Colò INFN: G. Benzoni, B. Blasi, C. Boiano, S. Brambilla, B. Million, O. Wieland, E. Vigezzi

> INFN-CNS3-GAMMA: MI, PD, LNL, FI, PG International collaborations within EUROPE, JAPAN, USA

> > CONGRESSO DEL DIPARTIMENTO DI FISICA

Milano, 28-29 June 2017

INTRODUCTION

Challenges in Nuclear Physics

- The Physics more than 7000 Nuclei !
- Interdisciplinarity Astrophysics
- **O Dedicated Facility/Detection Setups** γ spectroscopy

FOCUS on NUCLEAR STRUCTURE

Selected Recent Highlights

- Shape Coexistence
- Collective Excitations Resonances
- **Complex Excitations** *Coupling Particles and Phonons*
- OUTLOOK how to pin down the nuclear force ...

Our Challenge: UNIFIED Description of ALL Nuclei in the Universe

Our Challenge: UNIFIED Description of ALL Nuclei in the Universe

STRONG Interdisciplinary with ... ASTROPHYSICS

STRONG Interdisciplinar

10

Part 1 10

10

50

Impact on abundance

bundances

82

80 190 200

... ASTROPHYSICS

126

Many Body Quantum System

Symmetry Principle

Effective Nuclear Force

Heavy Elements ABUNDANCES depends on Structure of <u>UNKNOWN EXOTIC Nuclei</u>

Magic Numbers, Shapes

 $\begin{array}{c} \boldsymbol{\tau}_{\beta \text{ Spherical}} & \textbf{~10 x } \boldsymbol{\tau}_{\beta \text{ Deformed}} \\ \boldsymbol{P}_{n \text{ Spherical}} & \textbf{~0.5 x } \boldsymbol{P}_{n \text{ Deformed}} \end{array}$

APPLICATIONS Radio isotopes, Reactors, ...

A World Wide Effort to Expand the Nuclear Chart ...

- **PRODUCTION**: stable and radioactive ion beams, neutron beams, ...
- INVESTIGATION of Nuclear Structure: gamma and particle spectroscopy

LONG TRADITION OF γ-SPECTROSCOPY Arrays based on Compton suppressed Ge detectors

Starting from the 80's:

TESSA (Daresbury) OSIRIS (Berlin) ARGONNE-ND ARRAY (Argonne) NORDBALL (Copenhagen) JUROSPHERE (Jyvaskyla) EUROGAM (Strasbourg) CLARION (Oak Ridge) GASP/GALILEO (Legnaro) EUROBALL (Legnaro, Strasbourg) GAMMASPHERE

EUROBALL Legnaro, Strasbourg

STATE of the ART Ge ARRAYS

AGATA

GRETA (Advanced-GAmma-Tracking-Array) (Gamma-Ray Energy Tracking Array)

S. Paschalis et al, NIMA 709 (2013) 44-55

The "Ultimate" Ge Arrays

- **EFFICIENCY:** 43% $M_{\gamma} = 1$ and 28% $M\gamma = 30$ (@ 1 MeV, FULL BALL) **COUNT RATE** capabilities (100s KHz)
 - **ANGULAR RESOLUTION** of the γ interaction point ($\theta^{-1^{\circ}}$)
 - **"PERFECT" DOPPLER CORRECTION** (6 keV @ 1 MeV, β =50%)

The Gamma Tracking Array Concept

LNL: 2010-2011 15 crystals (5TC) Total Eff. ~6%

1/12 FULL BALL

AGATA Inauguration: 9th April 2010 – Legnaro National Laboratory INFN

Physics Campaign @ LNL (2010-2011) Mos

Most Relevant Results from Milano 2 Phys. Rev. Lett. 1 Review Paper Several Phys. Rev. C

The AGATA Evolution Towards 1π

LNL: 2010-2011 **15 crystals** Total Eff. ~6% GSI: 2012-2014 22 crystals Total Eff.~10%

GANIL: 2015-2019 up to 45 crystals Total Eff. ~22%

Demonstrator + PRISMA "backward" STABLE BEAMS 20 experiments AGATA + FRS "forward" RELATIVISTIC EXOTIC BEAMS 7 experiments AGATA+VAMOS+ ... "backward" EXOTIC (ISOL) & STABLE BEAMS 6 experiments in 2015

From 2020 at Legnaro-INFN (SPES Radioactive ISOL Beams)

AGATA - FULL Detector

180 crystals segmented (6480 segments) 60 triple clusters 2.5 tons FULLY DIGITAL electronics

Solid ang. 82% Eff. 43% (M_γ=1) P/T 58% (M_γ=1)

NuPECC Long Range Plan 2017 Perspectives in Nuclear Physics A. Bracco, Chair

Support to the completion of AGATA in full geometry

AGATA represents the state-of-the-art in gammaray spectroscopy and is an essential precision tool underpinning a broad programme of studies in nuclear structure, nuclear astrophysics and nuclear reactions. AGATA will be exploited at all of the large-scale radioactive and stable beam facilities and in the long-term must be fully completed in full 60 detector unit geometry in order to realise the envisaged scientific programme. AGATA will be realised in phases with the goal of completing the first phase with 20 units by 2020.

Detection Systems (State of the Art) Very Powerful and Complete Experimental Setups ...

MINIBALL

EXOGAM

GALILEO - LNL

Gamma spectroscopy HPGe, scintillators

charged-particle Spectroscopy Si stripped/pixel detectors

neutron identification

Magnetic Spectrometer Large Acceptance

Selected Recent Highlights of γ spectroscopy

Appearence of DIFFERENT SHAPES in the SAME NUCLEUS at low excitation energy

Secondary Minima in the Potential Energy Surface – PES METASTABLE Configurations

Present Challenge in Nuclear Physics: <u>MICROSCOPIC description</u> Emergence of SHAPES and DEFORMATION in a pure SHELL Model framework (individual nucleons + interaction)

MICROSCOPIC Structure of Nuclei: a computational challenge ...

Divergent Dimension of Configuration Space $\binom{K}{A} = \frac{K!}{(K-A)!A!}$ Number of ways to distribute A nucleons over K orbitals Number of N=Z configurations ⁸⁸Ru ≈ 10²⁸ 44 ⁵⁶Ni 28 ≈ 10¹⁰ ⁴⁸Cr ≈ 10⁷ 24 44**T**i ≈ 104 22

State-of-the-art SHELL Model possible for A< 100

new calculations scheme Monte Carlo Approach Effective N-N interaction

very powerfull computer **10⁶ parallel processors**

K-Computer Tokio University (Prof. Taka Otsuka's group) Monte Carlo SHELL Model (T. Otsuka's Group) ⁶⁶Ni – ⁷⁰Ni: COEXISTENCE of spherical, oblate and prolate SHAPES

Best Candidate for SHAPE isomerism

HINDERED γ -decay PROLATE \rightarrow SPHERICAL

Confirmed by Experiment !!!

 $^{18}\text{O} + {}^{64}\text{Ni} \rightarrow {}^{16}\text{O} + {}^{66}\text{Ni}$, below Coulomb barrier

STEP FORWARD in understanding MICROSCOPIC origin of deformation → VALIDATION of PREDICTIVE POWER of Most Advanced SHELL Model predictions

S.Leoni, B. Fornal et al., Phys. Rev. Lett. 118, 162502 (2017) – Editor's Suggestion Complementary studies in Ni chain by β -decay: G. Benzoni et al., ...

Selected Recent Highlights of γ spectroscopy

The DIPOLE Response In Nuclei

Neutron Pressure from SKIN Relevant for NEUTRON STARS Radii

ASTROPHYSICS Implications

- Nucleosynthesis
- Neutron Stars

Relevance in Nuclear Structure Complex Microscopic Nature

Pygmy Resonances in STABLE NUCLEI Heavy-Ion Inelastic Scattering: a probe sensitive to the surface

LNL Campaign AGATA + Si Telescopes + Scintillators (LaBr3)

¹⁷O @ 20 MeV/A on ²⁰⁸Pb, ¹²⁴Sn, ⁹⁰Zr, ¹⁴⁰Ce STABLE targets

A NEW OBSERVATION: 124Sn – QUADRUPOLE PYGMY

Multitude of 2⁺ discrete states

A. Bracco, F. Crespi, E.Lanza, Eur. Phys. J. A51 (2015) 99

Concentration of E2 Strength much below the GIANT QUADRUPOLE resonance - In agreement with Quasi-phonon Model predictions -

Pygmy Resonances in EXOTIC NUCLEI Relativistic Coulomb Excitation: high selectivity for E1 excitation

FIRST Case: EUROBALL + BaF2 Setup

Complementary program at RIKEN-Japan

PYGMY studies in the **MOST EXOTIC** Nuclei: ^{20,22,24}O, ^{50,52}Ca, ^{70,72}Ni, ^{128,132}Sn

Evolution of PYGMY strength along isotopic chains

8 large LaBr₃(Milano)

ε=1-2%@ 10 MeV

DALL – 160 Nal

Ongoing Experimental Campaign ... (A. Bracco, F. Camera, F. Crespi, O. Wieland, ...)

Selected Recent Highlights of γ spectroscopy

Couplings between Particle and Collective Degrees of Freedom

In NUCLEI

Particle-Phonon Couplings

PHONONS = Vibrations of MAGIC Core

Key Ingredient for:

- Anharmonicity of vibrational spectra
- Damping of Giant Resonances
- \rightarrow emergence of COMPLEX excitations

In CONDENSED MATTER

Electron-Phonon Couplings

Phonons and Plasmons

Key Ingredient for:

- Electromagnetic Response
- Superconductivity

in Metal Clusters, Fullerenes, ...

Common many-body diagrammatic techniques Different energy scales ...

Particle-Phonon Couplings around EXOTIC and Doubly Magic ¹³²Sn

The γ-spectroscopy campaign @ ILL-Reactor (Grenoble) 2012-2013: 100 days, 95% DATA taking

MOST INTENSE Continuum neutron source In pile $\Phi_n = 5 \times 10^{14} \text{ n cm}^2 \text{ s}^{-1}$

Dedicated ballistic neutron guide highly collimated beam (1 cm²) cold neutrons (meV) $\Phi_n = 2 \times 10^8 \text{ n cm}^{-2} \text{ s}^{-1}$

Fission Data ¹³³Sb = ¹³²Sn + 1 proton

 \rightarrow Alternative Approach

The New "HYBRID" Model (G. Colò, P.F. Bortignon - Milano) CORE Excitations (Phonons-RPA) + single particle (Hartree Fock)

¹³³Sb: ¹³²Sn + 1π

Coupling Matrix Elements between SINGLE PARTICLE and CORE excitations consistently calculated

NO FREE PARAMETERS - Same SkX Interaction

G. Colò, P.F. Bortignon, G. Bocchi, Phys. Rev. C 95, 034303 (2017)

The New "HYBRID" Model (G. Colò, P.F. Bortignon - Milano) CORE Excitations (Phonons-RPA) + single particle (Hartree Fock)

¹³³Sb: ¹³²Sn + 1π

STARTING POINT for extended investigation in MEDIUM/HEAVY Nuclei NOT possible with SHELL MODEL !!!

G. Bocchi, S. Leoni, B. Fornal et al., ... Phys. Lett. B 760, 273 (2016)

See POSTER S. Bottoni

 \bigcirc

0

2016 HIGHLIGHT Institut Laue-Langevin (ILL)

OUTLOOK: pinning down the NATURE of the nuclear force

<u>Major problem in Nuclear Physics</u>: detail composition of the nuclear force is NOT known !!!

In HEAVY-Systems: *Effective N-N Interaction*

Corrections are needed due to the presence of other Nucleons

LIGHT systems ONLY (up to C, O, Ne, ...) can be computed by <u>ab-initio calculations</u>: → they are sensitive to details of the N-N interaction (2 body and 3 body terms)

AGATA exp. in GANIL - in 10 days: ¹⁸O (141 MeV) + ²³⁸U (10 mg/cm²) γ -spectroscopy of n-rich B-C-O-F nuclei High Precision Lifetimes measurements τ = 100 fs - 10's ps

Conclusions

- NUCLEAR STRUCTURE PHYSICS aims at a unified description of > 7000 Nuclei in the Universe less than half are known ... very high discovery potential !!!
- Several BASIC questions to be answered

Microscopic Origin of shapes and deformations Nature of Resonance Excitations – neutron skins … Emergence of complex excitations – particle-phonon couplings … Outlook: sensitivity to details of nuclear force

- Strong Interdiciplinarity Astrophysics
- State-of-the-Art SETUP: AGATA, large volume scintillators, ...
- \circ A Major Challenge for THEORY ...

****** Thank You for the Attention ******

