

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Recent progresses in scintillating optical fiber dosimeters

Ivan Veronese

CONGRESSO DEL DIPARTIMENTO DI FISICA

Milan- 29th June 2017

Main partners of the research

Scientific collaboration involving:

M DEGLI STUDI DI MILANO BICOCCA

Department of Medical Physics

Department of Materials Science Prof. Anna Vedda and colleagues

HUMANITAS RESEARCH HOSPITAL

Fondazione IRCCS Istituto Nazionale dei Tumori

Background

Dosimetry needs in the modern X-rays radiation therapy

New irradiation technologies with some common feautures:

- beam modulation (i.e. Volumetric Modulated Arc Therapy, VMAT)
- small fields (Stereotactic Body Radiation Therapy SBRT)
- dose conformation \rightarrow dose escalation + hypofractionation

New needs in dosimetry for:

- Commissioning of the innovative machines
- QC of the radiation beams
- QA of the individual treatment plan in phantoms (check of the dose distribution)
- In-vivo dosimetry

Background

Scintillating optical fiber dosimeter

Advantages:

- small dimensions (point measurement, small field dosimetry)
- real time measurement of the dose/dose rate
- do not need HV (in-vivo dosimetry)
- unaffected by magnetic fields (ideal for the new Hibrid MRI-LINAC systems)

Major Challenge:

• Stem effect (Cerenkov light and scintillation of the passive fiber)

The Stem Effect

UNIVERSITÀ DEGLI STUDI DI MILANO

Research of a scintillator free from any spectral superposition with the stem effect

Rare earth-doped silica optical fibers

Ce-doped silica optical fibers

Eu-doped silica optical fibers

An effective method for removing the stem effect was implemented, but of difficult implementation in the clinical practice

- J Phys D 46, 2013
- Radiat Meas 56, 2013

- Narrow emission at ~ 620 nm related to the ${}^{5}D_{0} {}^{7}F_{2}$ transition of Eu³⁺
- Spectral region still interested by the stem effect in unlucky irradiation conditions

Yb-doped silica optical fibers

Spectral measurements confirmed the Yb RL independence of:

- \rightarrow the beam direction
- → the lenght of irradiated passive fibre

Spectra not corrected for the spectral response of the system

Yb-doped silica optical fibers

UNIVERSITÀ DEGLI STUDI DI MILANO

Prerequisite: stability/reproducibility of the RL signal

- Yb-doped optical fibers suffer of «hystereris effect»: increase of the RL efficiency with increasing the cumulated dose
- Defects of the silica matrix acting as competitive traps
- Competitive traps are deep enough to remain filled at room temperature, enabling stability of the RL over the time

Yb-doped silica optical fibers

Prerequisite: stability/reproducibility of the RL signal

- Yb-doped optical fibers suffer of «hystereris effect»: increase of the RL efficiency with increasing the cumulated dose
- Defects of the silica matrix acting as competitive traps
- Competitive traps are deep enough to remain filled at room temperature, enabling stability of the RL over the time

Yb-doped silica optical fibers: the reader

Design and implementation of an efficient and portable optical detector for real-time measurements of the emission of Yb^{3+}

APD (Geiger Mode)

Wavelength (nm)

Long-pass filters (cut-on wavelength: 950 nm)

Yb-doped silica optical fibers: the stem effect

Figure adapted by Carrasco et al. Med Phys 42, 2015

UNIVERSITÀ DEGLI STUDI DI MILANO Dipartimento di Fisica

Yb-doped silica optical fibers: dosimetry

Yb-doped silica optical fibers: validation

- Relative dose profiles (OAR, PDD) and Output Factors* (OF)
 - Varian Trilogy System Linear Accelerator
 - 6 MV X-rays FFF
 - Water phantom (IBA)

*The OF of a generic field with size ixi cm² is the ratio between the signal produced by this field and the corresponding signal produced by the standard size 10x10 cm² field

Reference detectors:

- Ion chamber (Exradin A26, Standard Imaging; CC13, IBA)
- Diodes (Razor, IBA; EDGE, Sun Nuclear Corporation)
- Scintillator (Exradin W1, Standard Imaging)
- Gafchromics films (EBT3, ISP technologies)

Yb-doped silica optical fibers: validation

Phys Med Biol 62, 2017

- Good agreement between the results of the fibre and of other reference detectors
- Effective and practical tool for "small field" dosimetry and promising for in-vivo dosimetry

Conclusions

- Rare earth doped silica optical fibers have RL properties that can be exploited in various dosimetry applications, and more in general for ionizing radiation detection and monitoring.
- For some applications connections with industrial partners have been already established, for other applications, including medical dosimetry, contacts are currently in progress.
- Further applications are possible → discussion and new inputs are welcome