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The problem

Model
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The problem
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« Experimental data are (equilibrium) average over 1023 molecules

- Often biomolecules are flexible




The problem

“forward model”
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The problem

', “forward model”
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We use simplified models

Recipe:

define your degrees of freedom

define an effective potential U(r)

most experimental data are at equilibrium

p(r) = — exp [— (2(:,7:)]
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We use simplified models
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- most experimental data are at equilibrium
exp

- define your degrees of freedom
- define an effective potential U(r)
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Change strategy: from data to model

Information Theory and Statistical Mechanics

E. T. Jaynes
Department of Physics, Stanford University, Stanford, California
(Received September 4, 1956; revised manuscript received March 4, 1957)

Information theory provides a constructive criterion for setting
up probability distributions on the basis of partial knowledge,
and leads to a type of statistical inference which is called the
maximum-entropy estimate, It is the least biased estimate
possible on the given information; i.e., it is maximally noncom-
mittal with regard to missing information. If one considers
statistical mechanics as a form of statistical inference rather than
as a physical theory, it is found that the usual computational
rules, starting with the determination of the partition function,
are an immediate consequence of the maximum-entropy principle.
In the resulting “subjective statistical mechanics,” the usual rules
are thus justified independently of any physical argument, and
in particular independently of experimental verification; whether

1. INTRODUCTION

THE recent appearance of a very comprehensive
survey' of past attempts to justify the methods
of statistical mechanics in terms of mechanics, classical
or quantum, has helped greatly, and at a very opportune
time, to emphasize the unsolved problems in this field.

1D. ter Haar, Revs. Modern Phys. 27, 289 (1955).

or not the results agree with experiment, they still represent the
best estimates that could have been made on the basis of the
information available.

It is concluded that statistical mechanics need not be regarded
as a physical theory dependent for its validity on the truth of
additional assumptions not contained in the laws of mechanics
(such as ergodicity, metric transitivity, equal a priori probabilities,
ctc.). Furthermore, it is possible to maintain a sharp distinction
between its physical and statistical aspects. The former consists
only of the correct enumeration of the states of a system and
their properties; the latter is a straightforward example of
statistical inference.

Although the subject has been under development for
many years, we still do not have a complete and
satisfactory theory, in the sense that there is no line
of argument proceeding from the laws of microscopic
mechanics to macroscopic phenomena, that is generally
regarded by physicists as convincing in all respects.
Such an argument should (a) be free from objection on
mathematical grounds, (b) involve no additional arbi-
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Change strategy: from data to model

-~ The distribution p(r;) which maximises the entropy S[p] = — / drip(r;) log p(r;)

under to the constrains (/m) = fi»" is given by

5pf7"z-) ( /d“p ri)log p(rs) ZA [/dnfm ri)p(r )—fﬁff’] — [/drip(ri) —1D —0

that is,

p(ri) =e - “exp [ Z)\mfm Ty ]

-~ If we assume that p(r;) is an equilibrium distribution, then

P(ri) = Z exp — 7

-~ Consequently,
U(Tz) — _kTZ )\mfm(ri)

where

d
- 1 Z exp
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Change strategy: from data to model

-~ The distribution p(r;) which minimises the entropy S[p] = — / dr;p(r;)log p(r;)

under to the constrains (/m) = fi»" is given by

529?7%) <_/dmp(m 08 2(r) = > U dr fm(ri)p(ri) = fﬁfi”] — 1 U drip(ri) — 1]) =0

that is,

p(ri) =c 7 *exp [ Z)\mfm T ]

-~ If we assume that p(r;) is an equilibrium distribution, then

o 1 iU(rZ)
P(ri) = Z exp — 7

-~ Consequently,
U@ = =kTS A fin(2) - The potential has the same functional form of the

forward model
where

L g7 = feor
N, 082 =T - The Lagrange multipliers are hard to find



Computational implementation

MD simulation [T % e
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An application: Integrin ligands
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An application: Integrin ligands
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NMR provides raw conformational data

Nuclear Overhauser Effect (NOE)
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The standard interpretation of NOE intensities

raw NOE intensities
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Molecular dynamics simulations...
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(Wang et al. 2006)




Let’s apply the MaxEnt principle

Ugarr(r)

Ucarr(r) + v, 6U(r)

MD simulation

re-weight sampled
conformations
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...until convergence....
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The worse molecule populates more states
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A more complex case: spin diffusion

1
We assumed Ii; = o < > but this is true only if 7,,, — 0.

76

In general, L;j(Tm) = e~V ™ I;;(0)

1
76
s,

where Wi; = (i|Hyer|7)2 ~

-8 The forward model is much heavier




The model changes a lot....
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Take home message....

Reitner, Hadjichristidid & Moller, Nature Materials (2003)



