Investigation of the early stages of growth of nanostructured zirconia produced by Supersonic Cluster Beam Deposition: from sub-monolayer to thin film regime

Francesca Borghi

LGM laboratory - CIMaINa

THIN FILMS

0	.1nm	1nm	10nm	100nm	1μm	10µm	100µm	1mm	1cm	
Meters	10 ⁻¹⁰	10 ⁻⁹	10-8	10-7	10 ⁻⁶	10 ⁻⁵	10-4	10 ⁻³	10 ⁻²	
	+ ~				ible let		- <u>L</u>		+	-
Nanometers	10 ⁻¹	tays 1	10	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶	10 ⁷	
Ato	oms	Mole	ecules		Organell	es C	ells			

THIN FILMS

Semiconductor technology

 Al_2O_3

Conclusions

THIN FILMS

contact

a-Si

poly-Si

ZnO:Al glass

Plasmonic nanostructures

10 um 30.0 kU 9.15E3 9936/00

Semiconductor technology

THIN FILMS

Introduction	Strategy &	৫ Methods	Results	and Discussion	C	onclusions
TOP-DOWN				TECHNIQUES		
				.0.0.	<u>()</u>	

Conclusions

BOTTOM-UP APPROACHES

Atomic-Layer-Deposited thin films

200 nm

Conclusions

BOTTOM-UP APPROACHES

Conclusions

BOTTOM-UP APPROACHES

Atomic-Layer-Deposited thin films

Venables, J. A., et al. Rep. Prog. Phys. 47, 399 (1984).

Nanostructured clusters-assembled thin films

Conclusions

BOTTOM-UP APPROACHES

Atomic-Layer-Deposited thin films

Venables, J. A., et al. Rep. Prog. Phys. 47, 399 (1984).

Nanostructured clusters-assembled thin films

Controlled properties by disorder organized at the nano/meso scale

Conclusions

MORPHOLOGY

Results and Discussion

Conclusions

MORPHOLOGY

Results and Discussion

Conclusions

MORPHOLOGY

Results and Discussion

Conclusions

Results and Discussion

Conclusions

Results and Discussion

Conclusions

Introduction	Strategy & Methods

Which are the parameters that control the morphological properties of thin film and their evolution?

Introduction

Which are the parameters that control the morphological properties of thin film and their evolution?

DESCRIBE

Introductio	n
-------------	---

Which are the parameters that control the morphological properties of thin film and their evolution?

DESCRIBE

CONTROL

Introduction	
--------------	--

Which are the parameters that control the morphological properties of thin film and their evolution?

DESCRIBE

CONTROL

ENGINEER

Intr	odu	icti	or
Intr	odu	icti	or

Which are the parameters that control the morphological properties of thin film and their evolution?

DESCRIBE

CONTROL

ENGINEER

STRUCTURAL --> FUNCTIONAL properties

Intr	odu	icti	or
Intr	odu	icti	or

Which are the parameters that control the morphological properties of thin film and their evolution?

DESCRIBE

CONTROL

ENGINEER

STRUCTURAL --> FUNCTIONAL properties

From the early stages, few clusters on the surface

JES(

Results and Discussion

Conclusions

STATE OF ART

EXPERIMENTS and **THEORY**

Barabási, A.-L. & Stanley, H. E. *Fractal Concepts in Surface Growth*. (Cambridge University Press, 1995)

> Jensen, P. *Rev. Mod. Phys.* (1999)

Strategy & Methods

Results and Discussion

Conclusions

CONTROL

STATE OF ART

EXPERIMENTS and **THEORY**

Bréchignac, C. et al. Für Phys. At. Mol. Clust. (1997) Fuchs, G. et al. Für Phys. At. Mol. Clust., (1993)

Bardotti, L., et al. Surf. Sci. (2000)

Vandamme, et al. J. Phys. Condens. Matter, (2003) Yoon, B. et al., Surf. Sci., (1999)

Bouwen, W. et al., Rev. Sci. Instrum., (2000)

Bouwen, W. et al. Thin Solid Films, (1999)

Barabási, A.-L. & Stanley, H. E. Fractal Concepts in Surface Growth. (Cambridge University Press, 1995)

> Jensen, P. *Rev. Mod. Phys.* (1999)
Strategy & Methods

Results and Discussion

Conclusions

ONTRO

STATE OF ART

EXPERIMENTS and **THEORY**

Barabási, A.-L. & Stanley, H. E. *Fractal Concepts in Surface Growth*. (Cambridge University Press, 1995)

> Jensen, P. *Rev. Mod. Phys.* (1999)

Bréchignac, C. et al. Für Phys. At. Mol. Clust. (1997) Fuchs, G. et al. Für Phys. At. Mol. Clust., (1993)

Bardotti, L., et al. Surf. Sci. (2000)

Vandamme, et al. J. Phys. Condens. Matter, (2003) Yoon, B. et al., Surf. Sci., (1999)

Too complex system for theoretical framework Bouwen, W. et al., Rev. Sci. Instrum., (2000)

Bouwen, W. et al. Thin Solid Films, (1999)

Low stability and deposition rate of cluster sources

Strategy & Methods

Results and Discussion

Conclusions

CONTROL

Barabási, A.-L. & Stanley, H. E. *Fractal Concepts in Surface Growth*. (Cambridge

University Press, 1995)

Jensen, P. *Rev. Mod. Phys.* (1999) Bréchignac, C. et al. Für Phys. At. Mol. Clust. (1997) Fuchs, G. et al. Für Phys. At. Mol. Clust., (1993)

STATE OF ART

EXPERIMENTS and THEORY

Bardotti, L., et al. Surf. Sci. (2000)

Vandamme, et al. J. Phys. Condens. Matter, (2003) Yoon, B. et al., Surf. Sci., (1999)

Too complex system for theoretical framework

Bouwen, W. et al., Rev. Sci. Instrum., (2000)

Bouwen, W. et al. Thin Solid Films, (1999)

Low stability and deposition rate of cluster sources

Do NOT focus on single defect but on the MESO/MACRO effects of disorder

K. Wegner, Journal of Phys. D Appl. Phys. (2006)

K. Wegner, Journal of Phys. D Appl. Phys. (2006)

K. Wegner, Journal of Phys. D Appl. Phys. (2006)

ENGINEER

Conclusions

Conclusions

Atomic Force Microscopy

ONTRO

Conclusions

Characterization of NS-ZrOx Thin Film

Strategy & Methods

Results and Discussion

Conclusions

DESCR

EVALUATION OF THE GEOMETRICAL PROPERTIES

 $2\mu m \ x \ 1\mu m \ x \ 0.005\mu m$

F. borghi, et al., Arxiv, submitted to Phys. Rev. B

CONTRO

E

Strategy & Methods

Results and Discussion

Conclusions

EVALUATION OF THE GEOMETRICAL PROPERTIES

 $2\mu m x 1\mu m x 0.005\mu m$

CONTRO

Strategy & Methods

Results and Discussion

Conclusions

ESC

EVALUATION OF THE GEOMETRICAL PROPERTIES

CONTROI

2μm x 1μm x 0.005μm

Coverage: ratio between the area occupied by clusters on the surface and the scanned area

Strategy & Methods

Results and Discussion

Conclusions

DESC

EVALUATION OF THE GEOMETRICAL PROPERTIES

9

NO

 $2\mu m x 1\mu m x 0.005\mu m$

Coverage: ratio between the area occupied by clusters on the surface and the scanned area Objects with dimension in z-direction different from the dimensions of primeval incident cluster have been called **islands**

DESCR

Conclusions

ONTRO

nm

20

15

10

10

-10 -15

E.

(e)

H

Conclusions

H

Conclusions

H

Conclusions

E

DESCE

Results and Discussion

100

E

HEIGHT EVOLUTION

Conclusions

ONTRO

DESCI

HEIGHT EVOLUTION

Conclusions

0 - 10 % : coalescence and fast nucleation processes

ENGINEER

DESCI

HEIGHT EVOLUTION

Conclusions

- 0 10 % : coalescence and fast nucleation processes
 - 10 70 %: (He) x-y juxtaposition and nucleation of new islands, (Ar) stepwise around coverage of 50%

DESCI

HEIGHT EVOLUTION

Conclusions

- 0 10 % : coalescence and fast nucleation processes
 - 10 70 %: (He) x-y juxtaposition and nucleation of new islands, (Ar) stepwise around coverage of 50%

70 - 100 % : Starting point of **ballistic deposition** (without diffusion and coalescence)

coverage of 50%

70 - 100 % : Starting point of **ballistic deposition** (without diffusion and coalescence)

F. borghi, et al., Arxiv, submitted to Phys. Rev. B

ENGINEER

DENSITY OF CLUSTERS AND ISLANDS

Conclusions

EI

CONTRO

DENSITY OF CLUSTERS AND ISLANDS

Conclusions

CONTRO

Nucleation events

DENSITY OF CLUSTERS AND ISLANDS

Conclusions

Nucleation events

Competition between nucleation events

and island growth

DENSITY OF CLUSTERS AND ISLANDS

Conclusions

ONTRO

Nucleation events

Competition between

nucleation events

and island growth

Islands coalescence

DENSITY OF CLUSTERS AND ISLANDS

Conclusions

CONTRO

Nucleation events

He

(a) 350

300

250

150 b

100

50

(11/µm²)

Competition between

Ar

nucleation events

Islands coalescence

and island growth

F. borghi, et al., Arxiv, submitted to Phys. Rev. B

20

40

Coverage %

60

Conclusions

CONTRO

DENSITY OF CLUSTERS AND ISLANDS

Nucleation events

He

(a) 350

300

250

150 ь

100

50

(11/µm²)

Competition between

nucleation events

and island growth

Islands coalescence

Conclusions

DESCR

DENSITY OF CLUSTERS AND ISLANDS

CONTRO

Nucleation events

Competition between

nucleation events

Islands coalescence

and island growth

DESCE

Introduction

Strategy & Methods

Results and Discussion

Conclusions

DESC

SURFACE GROWTH ON SPHERICAL GEOMETRY

A 1939 defense of basic research

GORDON RESEARCH CONFERENCES Topics include clusters and nanostructures p.848

F. Borghi, M. Chighizola, L. Marfori

NTR

Introduction

Strategy & Methods

Why is Greenland turning black, blue, and brown? p. 789

Results and Discussion

Conclusions

NTR

DESC

SURFACE GROWTH ON SPHERICAL GEOMETRY

GORDON RESEARCH CONFERENCES Topics include clusters and nanostructures p.848

y 9-14, 2017 - Boston

F. Borghi, M. Chighizola, L. Marfori

1.00

Rq=I nm

DESCE

Ns-TiOx

SURFACE GROWTH WITH ANNEALING

2.00

E

CONCLUSIONS

DESCE

 \checkmark Growth dynamics in sub-monolayer regime determines

different morphological properties of the cluster-assembled thin film

DES(

CONCLUSIONS

 \checkmark Growth dynamics in sub-monolayer regime determines

different morphological properties of the cluster-assembled thin film

 ✓ The morphological properties of cluster-assembled samples in thin-film regime evolve according to a ballistic deposition model (2+1), irrespective of the incident cluster dimensions

DES(

CONCLUSIONS

✓ Growth dynamics in sub-monolayer regime determines

different morphological properties of the cluster-assembled thin film

The morphological properties of cluster-assembled samples in thin-film regime evolve according to a ballistic deposition model (2+1), irrespective of the incident cluster dimensions
Thin films preserve their morphological properties and their

history even after a quite severe annealing process

CONCLUSIONS

 \checkmark Growth dynamics in sub-monolayer regime determines

different morphological properties of the cluster-assembled thin film

✓ The morphological properties of cluster-assembled samples
in thin-film regime evolve according to a ballistic deposition model

(2+1), irrespective of the incident cluster dimensions

 Thin films preserve their morphological properties and their history even after a quite severe annealing process

MAIN RESULT

We can describe and control the growth of nanostructured thin films in order to tune the functional properties of the interface by changing its morphology

CONTRO

ES

Novel nanostructured scaffolds to investigate

PERSPECTIVE

signalling in reconstructed neuronal networks

CONTROI

Novel nanostructured scaffolds to investigate

PERSPECTIVE

signalling in reconstructed neuronal networks

DESC

Conclusions

CONTROI

Novel nanostructured scaffolds to investigate

PERSPECTIVE

signalling in reconstructed neuronal networks

Control on morphological properties

LGM laboratory - CIMaINa

21.

LGM laboratory - CIMaINa

THANK YOU FOR YOUR ATTENTION!

21.