Generation and active control of coherent structures in partially neutralized magnetized plasmas

Giancarlo Maero

on behalf of the plasma physics group

R. Pozzoli, M. Romé, G. Maero

Dipartimento di Fisica, Università degli Studi di Milano and INFN Sezione di Milano

Introduction

- Penning traps and non-neutral plasma confinement
- Kelvin-Helmholtz instability
- Excitation and control of diocotron (KH) modes

Radio-frequency (RF) generated electron plasmas

- RF electron plasma generation
- Persistent structures: off-axis vortex stable and modulated equilibrium
- Autoresonant excitation at the modulation frequency
- Higher-order diocotron modes: RF effects on stability

Conclusions and outlook

Penning-Malmberg traps and non-neutral plasma confinement

Confinement principle:

≥ 3 biased cylinders (axial confinement) + axial magnetic field (radial confinement) Results in superposition of axial and transverse oscillatory motions

Single-particle picture: fast cyclotron + <u>E**x**B</u> drift

Collective picture: the natural equilibrium state is a round, centered column (single vortex) in a rotational equilibrium

$$P_{g} = \sum_{j} \left(mv_{j,g}r_{j} + q_{j} \frac{Br_{j}^{2}}{2c} \right) \approx \sum_{j} \left(q_{j} \frac{Br_{j}^{2}}{2c} \right) = \frac{qB}{2c} \sum_{j} r_{j}^{2}$$

high magnetization single species

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Kelvin-Helmholtz (diocotron) instability

Transverse dynamics: $\underline{E}x\underline{B}$ – collective KH (diocotron) modes and vortices (isomorphic to 2D Eulerian fluid).

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Kelvin-Helmholtz instability – turbulence

KH instability: in layers of **fluid** having a **velocity shear**, **vorticity** is created

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

l = 1 mode features and instability

'Negative energy' mode: dissipation leads to amplitude growth and loss

Sources of instability: * resistive-wall dissipation * presence of opposite-sign particles ... and in general anything related to injection/loss of P_{θ} (static and RF perturbations, charge and density variation, axial/transverse mode coupling...)

Autoresonance in non-linear oscillators

How to excite an oscillator? Start at low amplitude, at linear frequency. But then you must:

- adjust the forcing frequency
- stay in phase with the oscillator
- (= feedback system needed)

A practical alternative? Autoresonance:

 $C\underline{hirped forcing}$ swept across the oscillator's resonant frequency \rightarrow oscillator <u>locks in</u> with drive and follows drive frequency change $\rightarrow \underline{amplitude} \ automatically \ adjusts \ follow \ the \ oscillator's \ A - \omega \ relation$

Threshold phenomenon (always works beyond threshold amplitude) No need to tune the drive phase (the system takes care)

Autoresonant plasma manipulation: mode 1

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Penning traps around the world

Applications

- *Penning (harmonic potential, few particles)*: mass spectrometry, spectroscopy, fundamental constants
- Penning-Malmberg (flat-bottomed potential, many particles): plasma and fluid (collective) physics (also related to other <u>ExB</u>-dominated systems, e.g., thrusters, ion sources, fusion plasmas), turbulence, accumulation and cooling (spectrometry, antimatter synthesis)

NOTE: systems are often not 'ideal' (multiple species, RF perturbations...)

Our set-ups: ELTRAP and DuEl traps

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

RF electron plasma generation

The application of a RF excitation on one of the inner electrodes heats the free electrons in the background gas leading to ionization. Typical RF parameters: $f(t)=V_{RF}sin(2\pi v_{RF}t)$, $V_{RF}\sim 1-5$ V, $v_{RF}\sim 1-30$ MHz (vs diocotron mode frequencies in the **10-100** kHz range). A balance is established in a time range of **seconds**.

Very different from externally-injected, 'quiescent' plasma: external forcing, ionization, continuous creation and loss of e^- and ions \rightarrow sources of dissipation (instabilities)

Equilibrium states

Generation parameters: B = 0.1 T, $L_{trap} = 570 mm$, C7 excitation: $V_{RF} = 1.5 V$, $v_{RF} = 0.1-30 MHz$, t = 4.5 s

Ion trapping – *l*=1 ion-driven instability

- Ions are co-trapped due to e⁻ space charge (→ multiple trap crossing and accumulation, with time scales ~100 ms)
- Differential drift → change in angular momentum (→ mean square radius) of the column and instability
- Both l=1 mode instability and direct trapped-ion measurements indicate N_i/N_e as high as $10^{-2} 10^{-1}$ (significant plasma neutralization)

A. Franzetti and L. Gavassino, BSc theses 2016; N. Cantini and E. Villa, BSc theses 2017

Equilibrium states: off-axis vortex

As long as the RF drive is present, an off-axis equilibrium states may exist for a single vortex.

But: *l*=1 mode is prone to a number of destructive instabilities if RF is switched off, so what?

And worse: *l*=1 autoresonant control does not work...

l=1 diocotron mode modulation

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

l=1 diocotron mode modulation

UNIVI DIPAR

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Autoresonant excitation at v_{mod}

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Higher-order KH modes: RF effects on stability

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Conclusions and outlook

• RF plasma generation: Forget 'easy' evolution of single-species non-neutral plasma; typical integrals (charge, angular momentum, energy) not conserved; usual manipulations techniques not efficient

• A balance can be reached involving particle loss and refurbishment, continuous excitation; non-trivial equilibria beyond collision scales (1-2 vortices)

• Play around this equilibrium: Autoresonance brings control of displacement AND total charge

More to do:

* Multipolar and rotating electric RF fields to improve stability, positioning, compression (again: it <u>does not work exactly as in</u> <u>freely-evolving plasmas!</u>)

* Take advantage of ion trapping (ion manipulation and extraction)

Collaborators and acknowledgments

Collaborators in activities related to trapped plasmas: Shi Chen (Institute of Fluid Physics, China Academy of Engineering Physics), Marco Cavenago (INFN-LNL) and formerly F. De Luca, G. Bettega, B. Paroli, M. Ikram (Unimi); I. Kotelnikov (Budker Institute, Novosibirsk); V. Carbone group (Unical); C. Svelto group (Polimi)

Technical support: Officina Meccanica del Dipartimento di Fisica

Recent BSc and MSc thesis students (2016 – now): B. Achilli, N. Cantini, A. Da Col, A. Franzetti, L. Gavassino, L. Patricelli, E. Villa

Funding (last 10 years): MIUR (PRIN2007, PRIN2009); INFN Gruppo V (ELTEST, ELEBEAM, COOLBEAM, PLASMA4BEAM); Unimi (Piano Sviluppo Unimi 2014/15/16)

Additional material

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Chaoticity, heating, ionization efficiency

$$\omega(n) = \frac{1}{P} \sum_{i=1}^{P} \sqrt{\langle e_i^2(n) \rangle - \langle e_i(n) \rangle^2}$$

Left: Roughness ω (standard deviation of energy states) averaged over 500 initial conditions in the chaotic region. Parameters: V₀=0, V₁=3 eV, L₁+L₂=1 m. The roughness exhibits complex structuring and scaling with geometry and forcing parameters.

Ionization of H_2 background (10⁻⁸ mbar), which introduces weak dissipation in the chaotic map.

Ionization (left, v=8 MHz, other parameters as above) follows well the rend of ω vs geometry. Peaks found are for trajectories exploring the energy range where cross section is maximum (right, geometry as above, 5 eV excitation).

RF electron plasma generation

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

RF generation and chaotic maps

Qualitative 1D model: particle bouncing in a well with forcing $\sim V_{RF} sin(2\pi v_{RF} t)$

Net energy gain up to ionization threshold is possible in low-energy region (chaotic region)

