
Optical quantum communication with PNR detectors: phase estimation and 
coherent-state discrimination in the presence of phase noise

Matteo Bina1,*, Alessia Allevi2, Maria Bondani3 & Stefano Olivares1,4

* matteo.bina@gmail.com CREDITS

1Università	degli	Studi	di	Milano			2Università	degli	Studi	dell’Insubria			3Institute	for	Photonics	and	Nanotechnologies	CNR			4INFN	Sezione	di	Milano

State discrimination protocols in communication channels with phase-shifted coherent states are based on interferometric schemes. In these setups the signals are mixed with a local oscillator (LO) with a well-defined reference phase. 
However the coherent signals from the sender to the receiver can be strongly affected by both phase drift and phase noise, making the communication impracticable. Therefore it is crucial to monitor the relative optical phase between 
signal and LO. Recent technological progresses brought to commercialization of photon-number-resolving (PNR) detectors, capable of distinguishing among different Fock states, up to a detecting threshold. These detectors provide 
additional information, giving direct access to the photon statistics of the output states. We show how the use of PNR detectors may improve the estimation of phase drifts in a Kennedy-like receiver, employing a Bayesian post-
processing of a small amount of data drawn from the outputs of the shot-by-shot discrimination protocol. We also propose a homodyne-like detection scheme involving PNR detectors to discriminate between the coherent signals 
affected by either uniform or gaussian phase noise, showing how this strategy well approaches the Helstrom bound. Both the estimation and discrimination protocols are validated by proof-of-principle experiments employing hybrid 
photodetectors.
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ESTIMATION OF PHASE DRIFT IN THE PRESENCE OF PHASE NOISE
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DISCRIMINATION OF NOISY COHERENT STATES: HOMODYNE-LIKE SCHEME
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in Kennedy-like receivers, in the regime of low-intensity LO and even in the presence of phase
noise [15].

2. Homodyne detection with PNR detectors and state discrimination

The “imperfection” in a protocol aimed at discriminating between two non-orthogonal quantum
states is quantified by the error probability Pe and depends on the employed measurement
apparatus. Given two quantum states ⇢̂1 and ⇢̂0, with a priori probabilities ⌘1 and ⌘0, ⌘1 + ⌘0 = 1,
the minimum error probability is given by the Helstrom bound [16]
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In our work we consider a standard scheme, in which a binary signal is encoded in two coherent
states ⇢̂1 ⌘ | �ih� | and ⇢̂0 ⌘ |� �ih�� |, � 2 R. Furthermore, we also assume that the propagation
of the signals is a↵ected by phase noise, whose e↵ect can be described by the map
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' 2 [��/2, �/2] and f (') = 0 otherwise. In the case of gaussian phase noise, f (') = N (';�2)
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To be decoded, the input state is mixed at a beam splitter (BS) of transmittance ⌧ with
the LO |↵i, ↵ 2 R. The output modes ĉ and d̂ of the BS can be monitored by means of PNR
detectors, giving access to the statistics of their photocounts nc and nd and, thus, of the di↵erence
� = nc � nd , that is equivalent to a homodyne-like detection. In particular, the distribution
of the aleatory variable �, with the two stochastic variables nc and nd described by Poisson
distributions, having mean values µc and µd , is given by the Skellam distribution [17]
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where I�(x) is the modified Bessel function of the first kind. In the ideal case of the absence of
phase noise, the mean values of the Poisson distributions for an input signal | � ei�i are
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discrimination strategy, let us assume that µc (0) > µd (0) and µc (⇡) < µd (⇡). Then we can use
the following strategy: � > 0) | �i and � < 0) | � �i (for � = 0 a random decision is made).
Whenever � < 0 (� > 0) given the input | �i (| � �i), an error in the inference occurs.

If we take into account phase noise, the mean numbers of photons at the outputs of the BS
are still given by Eqs. (4), but with the substitution � ! � � '. In this case, the overall error
probability in the discrimination of | ± �i is given by:
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Fig. 1. (a) Sketch of the experimental setup. (b) Two typical photon-number distributions
measured by the HPDs: experimental histograms, theoretical Poisson distribution (black
dots), with the same mean value of the data, and the corresponding fidelities. See the text
for details.

where S0 is the value of the Skellam distribution for � = 0, i.e. in the case of inconclusive
measurement.

Given these assumptions, our main goal is to demonstrate that, by exploiting a detection
scheme endowed with PNR detectors and performing the proposed homodyne-like strategy, it
is possible to reach high-performance level in the discrimination protocol. As shown in [14], a
standard homodyne scheme approaches this goal when phase noise a↵ects the signals. In this
case the error probability reads:

P(hd)
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2
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dx
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0
dx
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where we introduced the homodyne probability distribution
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1p
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p

2 � cos')2
, (8)

in which the LO is a macroscopic coherent field.

3. Proof-of-principle experiment

In order to test the performance of our strategy, i.e. the employment of PNR detectors in a
homodyne-like measurement with a low-intensity LO and in the presence of phase noise, we
realized a proof-of-principle experiment.

As shown in Fig. 1(a), the second-harmonic pulses (5-ps-pulse duration) emitted at 523 nm by
a mode-locked Nd:YLF laser regeneratively amplified at 500 Hz were sent to a Mach-Zehnder
interferometer to get signal and LO. In order to set the intensities of the two fields, we inserted
two variable neutral density filters (ND) in the two arms and we optimized the spatial and
temporal superposition of signal and LO in order to get almost the best overlap admitted by
the choice of the amplitudes and of the balancing (see below). The length of one arm of the
interferometer was changed in steps by means of a piezoelectric movement (Pz) in order to
modify the LO phase in the whole 2⇡�range. The light at the two outputs of the second BS
was collected by two multi-mode fibers (MF, 600-µm-core diameter) and sent to two hybrid
photodetectors (HPD, mod. R10467U-40, Hamamatsu), which play the role of the PNR detectors.
HPDs are commercial photodetectors, whose technology has been already addressed in Ref. [18].
The output of each detector was amplified (preamplifier A250 plus amplifier A275, Amptek),
synchronously integrated over a 500-ns window (SGI, SR250, Stanford) and digitized (AT-
MIO-16E-1, National Instruments). According to the model already presented in Ref. [19], the
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2. Homodyne detection with PNR detectors and state discrimination

The “imperfection” in a protocol aimed at discriminating between two non-orthogonal quantum
states is quantified by the error probability Pe and depends on the employed measurement
apparatus. Given two quantum states ⇢̂1 and ⇢̂0, with a priori probabilities ⌘1 and ⌘0, ⌘1 + ⌘0 = 1,
the minimum error probability is given by the Helstrom bound [16]
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In our work we consider a standard scheme, in which a binary signal is encoded in two coherent
states ⇢̂1 ⌘ | �ih� | and ⇢̂0 ⌘ |� �ih�� |, � 2 R. Furthermore, we also assume that the propagation
of the signals is a↵ected by phase noise, whose e↵ect can be described by the map
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by assuming ⌘1 = ⌘0 = 1/2, the Helstrom bound (1) is given by P(H )
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To be decoded, the input state is mixed at a beam splitter (BS) of transmittance ⌧ with
the LO |↵i, ↵ 2 R. The output modes ĉ and d̂ of the BS can be monitored by means of PNR
detectors, giving access to the statistics of their photocounts nc and nd and, thus, of the di↵erence
� = nc � nd , that is equivalent to a homodyne-like detection. In particular, the distribution
of the aleatory variable �, with the two stochastic variables nc and nd described by Poisson
distributions, having mean values µc and µd , is given by the Skellam distribution [17]

S�(µc , µd ) = e�µc�µd

 
µc
µd

! �
2

I�(2
p
µc µd ), � 2 Z, (3)

where I�(x) is the modified Bessel function of the first kind. In the ideal case of the absence of
phase noise, the mean values of the Poisson distributions for an input signal | � ei�i are

µc (�) = a2
c + b2

c + 2acbc cos(�) and µd (�) = a2
d + b2

d � 2adbd cos(�) , (4)

where we set a2
c = ↵

2(1 � ⌧), a2
d
= ↵2⌧, b2

c = �
2⌧, and b2

d
= �2(1 � ⌧). In order to define a

discrimination strategy, let us assume that µc (0) > µd (0) and µc (⇡) < µd (⇡). Then we can use
the following strategy: � > 0) | �i and � < 0) | � �i (for � = 0 a random decision is made).
Whenever � < 0 (� > 0) given the input | �i (| � �i), an error in the inference occurs.

If we take into account phase noise, the mean numbers of photons at the outputs of the BS
are still given by Eqs. (4), but with the substitution � ! � � '. In this case, the overall error
probability in the discrimination of | ± �i is given by:

P(sk )
e =

Z

R
d' f (')p(sk )

e ('), (5)

with:

p(sk )
e (') =

1
2

2
666664

�1X

�=�1
S�

⇣
µc ('), µd (')

⌘
+

+1X

�=1

S�
⇣
µc (' � ⇡), µd (' � ⇡)

⌘
+ S0

3
777775 , (6)

                                                                                            Vol. 25, No. 9 | 1 May 2017 | OPTICS EXPRESS 10687 

in Kennedy-like receivers, in the regime of low-intensity LO and even in the presence of phase
noise [15].

2. Homodyne detection with PNR detectors and state discrimination

The “imperfection” in a protocol aimed at discriminating between two non-orthogonal quantum
states is quantified by the error probability Pe and depends on the employed measurement
apparatus. Given two quantum states ⇢̂1 and ⇢̂0, with a priori probabilities ⌘1 and ⌘0, ⌘1 + ⌘0 = 1,
the minimum error probability is given by the Helstrom bound [16]

P(H )
e =

1
2


1 � Tr |⌘1 ⇢̂1 � ⌘0 ⇢̂0 |

�
. (1)

In our work we consider a standard scheme, in which a binary signal is encoded in two coherent
states ⇢̂1 ⌘ | �ih� | and ⇢̂0 ⌘ |� �ih�� |, � 2 R. Furthermore, we also assume that the propagation
of the signals is a↵ected by phase noise, whose e↵ect can be described by the map

⇢̂k 7! E ( ⇢̂k ) =
Z

R
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The “imperfection” in a protocol aimed at discriminating between two non-orthogonal quantum
states is quantified by the error probability Pe and depends on the employed measurement
apparatus. Given two quantum states ⇢̂1 and ⇢̂0, with a priori probabilities ⌘1 and ⌘0, ⌘1 + ⌘0 = 1,
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the LO |↵i, ↵ 2 R. The output modes ĉ and d̂ of the BS can be monitored by means of PNR
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distributions, having mean values µc and µd , is given by the Skellam distribution [17]

S�(µc , µd ) = e�µc�µd

 
µc
µd

! �
2

I�(2
p
µc µd ), � 2 Z, (3)

where I�(x) is the modified Bessel function of the first kind. In the ideal case of the absence of
phase noise, the mean values of the Poisson distributions for an input signal | � ei�i are

µc (�) = a2
c + b2

c + 2acbc cos(�) and µd (�) = a2
d + b2

d � 2adbd cos(�) , (4)

where we set a2
c = ↵

2(1 � ⌧), a2
d
= ↵2⌧, b2

c = �
2⌧, and b2

d
= �2(1 � ⌧). In order to define a

discrimination strategy, let us assume that µc (0) > µd (0) and µc (⇡) < µd (⇡). Then we can use
the following strategy: � > 0) | �i and � < 0) | � �i (for � = 0 a random decision is made).
Whenever � < 0 (� > 0) given the input | �i (| � �i), an error in the inference occurs.

If we take into account phase noise, the mean numbers of photons at the outputs of the BS
are still given by Eqs. (4), but with the substitution � ! � � '. In this case, the overall error
probability in the discrimination of | ± �i is given by:

P(sk )
e =

Z

R
d' f (')p(sk )

e ('), (5)

with:

p(sk )
e (') =

1
2

2
666664

�1X

�=�1
S�

⇣
µc ('), µd (')

⌘
+

+1X

�=1

S�
⇣
µc (' � ⇡), µd (' � ⇡)

⌘
+ S0

3
777775 , (6)

                                                                                            Vol. 25, No. 9 | 1 May 2017 | OPTICS EXPRESS 10687 

Homodyne Pe

la
se
r

BS

BS

ND

ND
M

M

HPD

HPD
MF

MFL

L

Pz

LO

si
gn
al

0 5 10 15 20 25
0.00

0.05

0.10

0.15

P(
m
)

 

 

m
P(
m
)

m

0 2 4 6 8 10 12
0.00
0.05
0.10
0.15
0.20
0.25

 

 

P(
m
)

m

P(
m
)

m

(a)
(b)

(c)

laser
M

M
ND

NDBS

BS

L

L

signal

LO

MF

MF

Pz

HPD
HPD

f = 99.98%

la
se
r

BS

BS

ND

ND
M

M

HPD

HPD
MF

MFL

L

Pz

LO

si
gn
al

0 5 10 15 20 25
0.00

0.05

0.10

0.15

P(
m
)

 

 

m

P(
m
)

m

0 2 4 6 8 10 12
0.00
0.05
0.10
0.15
0.20
0.25

 

 

P(
m
)

m

P(
m
)

m

(a)
(b)

(c)

f = 99.84%

Experiment #2

close to constructive 
interference 

close to destructive 
interference 

(a) (b)

Fig. 1. (a) Sketch of the experimental setup. (b) Two typical photon-number distributions
measured by the HPDs: experimental histograms, theoretical Poisson distribution (black
dots), with the same mean value of the data, and the corresponding fidelities. See the text
for details.

where S0 is the value of the Skellam distribution for � = 0, i.e. in the case of inconclusive
measurement.

Given these assumptions, our main goal is to demonstrate that, by exploiting a detection
scheme endowed with PNR detectors and performing the proposed homodyne-like strategy, it
is possible to reach high-performance level in the discrimination protocol. As shown in [14], a
standard homodyne scheme approaches this goal when phase noise a↵ects the signals. In this
case the error probability reads:

P(hd)
e =

1
2

"Z 0

�1
dx
Z

R
d' f (')phd (x; �; ') +

Z +1

0
dx
Z

R
d' f (')phd (x;��; ')

#
, (7)

where we introduced the homodyne probability distribution

phd (x;±�; ') =
1p
⇡

e�(x ⌥
p

2 � cos')2
, (8)

in which the LO is a macroscopic coherent field.

3. Proof-of-principle experiment

In order to test the performance of our strategy, i.e. the employment of PNR detectors in a
homodyne-like measurement with a low-intensity LO and in the presence of phase noise, we
realized a proof-of-principle experiment.

As shown in Fig. 1(a), the second-harmonic pulses (5-ps-pulse duration) emitted at 523 nm by
a mode-locked Nd:YLF laser regeneratively amplified at 500 Hz were sent to a Mach-Zehnder
interferometer to get signal and LO. In order to set the intensities of the two fields, we inserted
two variable neutral density filters (ND) in the two arms and we optimized the spatial and
temporal superposition of signal and LO in order to get almost the best overlap admitted by
the choice of the amplitudes and of the balancing (see below). The length of one arm of the
interferometer was changed in steps by means of a piezoelectric movement (Pz) in order to
modify the LO phase in the whole 2⇡�range. The light at the two outputs of the second BS
was collected by two multi-mode fibers (MF, 600-µm-core diameter) and sent to two hybrid
photodetectors (HPD, mod. R10467U-40, Hamamatsu), which play the role of the PNR detectors.
HPDs are commercial photodetectors, whose technology has been already addressed in Ref. [18].
The output of each detector was amplified (preamplifier A250 plus amplifier A275, Amptek),
synchronously integrated over a 500-ns window (SGI, SR250, Stanford) and digitized (AT-
MIO-16E-1, National Instruments). According to the model already presented in Ref. [19], the
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