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Mass diffusion
Fundamental processes:

• Diffusion

• Convection (absent in g)

Adolf Fick

1855

cDj 

MASS TRANSFER IN LIQUIDS

• Growth and processing of materials (crystal

growth)

• Trasport at the cellular level

• Rate of chemical reactions

Fickean diffusion: c

Thermal diffusion: T c
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Mesoscopic scale

Velocity fluctuations

induce

concentration fluctuations

Microscopic scale

Thermal motion

c

T. R. Kirkpatrick, E. G. D. Cohen, and J. R. 

Dorfman, Phys. Rev A 26, 1812 (1982)

Robert Brown

1827

Albert Einstein

1905

Jean Perrin

1908
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NON-EQUILIBRIUM FLUCTUATIONS

Understanding diffusion at the mesoscopic scale
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Shadowgraphy

Shadowgraph

OPTICAL DETECTION

Non Equilibrium Fluctuations during Diffusion in Complex Liquids
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Mean squared amplitude of fluctuations

 

4)(  qqI

Power law scaling

Self affine structure of 

the fronts of diffusion

I(q)=const

Gravitational stabilization
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2D diffusion in liquids with g=0

F. Balboa et al., SIAM J. Multiscale Modeling and 

Simulation, 10(4):1369-1408, (2012)

A. Vailati and M. Giglio, “Giant fluctuations in a 

free diffusion process”, Nature 390, 262 (1997)

P. N. Segré and . V. Sengers, Physica A, 46, (1993)
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Mesoscopic scale

Gravitational Stabilization of Fluctuations

Time scales

Diffusion
2

1

Dq
diff 

Buoyancy
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Rolloff wave vector
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Dynamics of fluctuations dominated

by buoyancy at small q:

quenching or amplification

NEED FOR MICROGRAVITY

g
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FOTON M3 

14-26 September 2007GRADFLEXGRADFLEX

PS in toluene
9100 MW, 1.8% w/w

1mm thickness

T=20K
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GRADFLEX
GRadient Driven FLuctuation EXperiment

• Linearized hydrodynamics: small gradients, steady state

• Diffusive dynamics of fluctuations

• Finite size effects

SCIENTIFIC RETURN
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OVERALL OBJECTIVES

Non-EqUilibrium
Fluctuations:

DIffusion in CompleX
Liquids

Large gradients and 
time dependent

processes
poorly understood

Fundamental
objectives

Giant
Casimir-like
interactions

Complex liquids: 
polymers and 

colloids

Investigate Fluid
behavior

by means of non-equlibrium
fluctuations

Theoretical and 
experimental

Tools to quantify
transport
properties

Transport
properties of 

liquids

Applicative 
objectives
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Non Equilibrium Fluctuations during Diffusion in Complex Liquids

OUTSTANDING NOVEL EXPERIMENTS

1. Casimir forces out of equilibrium

2. Non-equilibrium fluctuations in a complex mixture including a polymer

3. Glass transition in a complex mixture including a polymer

4. Transient fluctuations: spinodal-like dynamics

5. Colloids: static and dynamic properties 



Kirkpatrick, Ortiz de Zárate, Sengers, 
Phys. Rev. Lett. 110, 235902, 2013, 
Phys. Rev. Lett. 115, 035901, 2015. 

Non-equilibrium Casimir forces

Long-ranged non-equilibrium fluctuations:
• generic scale invariance far from a critical point
• confinement: fluctuation-induced (Casimir) forces
•Orders of magnitude larger than critical Casimir 

Classical critical Casimir effect
M. Fisher and P. G. De Gennes, 

C. R. Acad. Sci. B 287, 207-209 (1978)

- correlation length  diverges near critical point
- long ranged fluctuations under confinement
- Scale invariant fluctuations at critical point

Credits: J. R. Nelson

Non-equilibrium Casimir effect

Not yet observed experimentally
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Spinodal-like scaling of NEF 
during transient diffusion

Scientific relevance
• time dependent process
• no available theoretical results
• birth of the fluctuations
• simulations show a spinodal like scaling of NEF

S(k/km, t) = km(t)−αF(k/km)

• Gradflex results are partially compatible with 
simulations: need for a larger statistical sample

R. Cerbino, Y. Sun, A. Donev & A. Vailati, 

Nature Scientific Reports 5, 14486 (2015) 
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F. Giavazzi, G. Savorana, A. Vailati, R. Cerbino, Soft Matter 12, 6588 (2016)

Non-equilibrium fluctuations
in dense colloidal suspensions

Scientific relevance
• almost nothing is known about colloids and NEF
• only one theory for dense suspensions (Schmitz, 1994) 
•Dense suspensions show a complex and richer dynamics
•non-linear  theories needed?
•Ideal sample for probing Casimir forces induced by NEF

diffusion

buoyancy
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Multiscale Simulations
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• Numerical methods to solve the

equations of fluctuating hydrodynamics

in multispecies liquid mixtures developed by

A. Donev and collaborators

• simulation of fully time-dependent

nonlinear equations

• CHALLENGE: combine "big simulation" with

"big data" generated by experiments under a

Monte Carlo sampler

Development of an instability during diffusive mixing in a ternary mixture, 

triggered entirely by thermal fluctuations

A. Donev et al., Physics of Fluids, 27(3):037103, (2015) 
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